
Loxin – A Solution to Password-less Universal Login

Bo Zhu, Xinxin Fan, and Guang Gong

University of Waterloo
{bo.zhu,x5fan,ggong}@uwaterloo.ca

Abstract. As the easiest and cheapest way of authenticating an end user, pass-
word based authentication methods have been consistently chosen by almost every
new cloud service. Unfortunately, the explosive growth of cloud services and web
applications has made it impossible for users to manage dozens of passwords for
accessing different cloud services. The situation is even worse considering the po-
tential application of massively parallel computing devices such as GPU and ASIC
for efficient password cracking. Hence, from a usability viewpoint, passwords may
have reached the end of their useful life.
Motivated by a number of recent industry initiatives for online authentication, we
present Loxin, an innovative solution for password-less universal login. Loxin aims
to improve on passwords with respect to both usability and security. Loxin takes
advantages of push message services for mobile devices and enables users to access
multiple cloud services by using pre-owned identities, such as email addresses,
together with few taps on their mobile devices.
In particular, the Loxin server cannot generate users’ login credentials, thereby
eliminating the potential risk of server compromises. Loxin is resistant to the most
common attacks on cloud services such as replay attacks and man-in-the-middle
attacks. We also discuss possible extensions for protecting Loxin from vendor lock-
in and single point of failure, in order to ensure Loxin to be an open and stable
authentication system. The application of the proposed Loxin security framework
to the recent MintChip Challenge demonstrates the power of Loxin for building a
real-world password-less mobile payment solution.

1 Introduction

With the advent of amazing cloud services and web applications, users frequently access
services in their daily lives. Nowadays, we are likely to have more than ten accounts for
computers, email accounts, websites, social networks, and various other cloud services, all
with different passwords and security policies. Memorizing all passwords is both difficult
and annoying, so people often end up in using simple passwords, or constantly forgetting
less frequently used ones. It would be very useful if we can find an innovate way of accessing
cloud services, which neither involves memorizing dozens of alphanumeric combinations,
nor adds layers of complexity for users.

For password-based authentication methods, their security is mainly determined by
the difficulty of guessing a user’s password. Unfortunately, passwords usually have low
entropy and are easier to guess than users think [2]. To further enhance the security of
password-based web applications, a promising solution is to deploy a technology called
two-factor or multi-factor authentication, in which a user is required to provide additional
authentication information besides passwords. The second piece of information is typi-
cally generated by a physical token such as RSA SecurID [15] or a software application



2 Bo Zhu, Xinxin Fan, and Guang Gong

as Google Authenticator [12]. If different service providers set up their own two-factor au-
thentication services, users may have to experience painful registration and login processes
repeatedly.

A naive way to reduce users’ burden for holding multiple passwords for different cloud
services is to store users’ credentials in a single device or service, and use certain key
derivation functions to generate temporal passwords for sequential logins. However, this
approach exposes the authentication server as a primary target of attackers. The other
approach is to employ an Internet-scale identity system that defines standardized mecha-
nisms enabling the identity attributes of its users to be shared between web applications
and cloud services. A number of technologies and standards such as OpenID [13] and
OAuth [5] have emerged to deliver an Internet-scale identity system during the past few
years. The basic idea of those identity systems is to authenticate users with the aid of
trusted Identity Providers (IDPs).

Recently, Bonneau et al. presented a comprehensive evaluation [1] for two decades
of proposals to replace text passwords for general-purpose user authentication on the
Internet. Their evaluation results have demonstrated the difficulty of replacing passwords
and highlighted the research challenges towards designing a password-less login scheme.
In this contribution, we propose Loxin, an innovative security framework for password-
less universal login. After an initial registration process, Loxin enables a user to access
multiple cloud services or web applications with only few taps on his/her mobile devices.
This salient feature comes from the adoption of push message services for mobile devices
and public-key cryptography. Different from most existing login solutions, the servers in
Loxin are not able to generate users’ credentials. Therefore, even if a Loxin server is
compromised, attackers cannot impersonate a user in order to access cloud services. As
a potential application of the Loxin security framework, we have applied it to build a
password-less mobile payment solution for tackling the recent MintChip Challenge [16].

The remainder of this paper is organized as follows. Section 2 gives a detailed de-
scription of the Loxin design, followed by the security analysis of the Loxin framework in
Section 3. In Section 4, we discuss possible extensions of the Loxin security framework for
a wide range of applications. Section 5 applies the Loxin security framework to tackle the
MintChip Challenge, followed by the discussion of the related work in Section 6. Finally,
we conclude this paper in Section 7.

2 Design of Loxin

This section describes the detailed design of Loxin, including the mechanisms to perform
registration, authentication and revocation.

2.1 Architecture

The architecture of Loxin consists of the following components.

Loxin App
An application installed on users’ mobile devices.

Loxin Server
A backend server for Loxin’s service, which stores the registration information about
the Loxin App.



Loxin – A Solution to Password-less Universal Login 3

Certificate Authority (CA)
A trusted public-key certificate authority.

Identity Provider (IDP)
A trusted identity provider, such as an email account provider.

Push Message Service (PMS)
A third-party service that can send notifications to users’ mobile devices. Such services
include Google Cloud Message for Android and Apple Push Notification Service for
iOS.

The adoption of the PMS makes the whole authentication process more convenient
and user-friendly, but it is possible to complete the entire authentication process without
the PMS. Possible extensions to achieve this will be discussed in Section 4.

2.2 Registration

Once the Loxin App is installed, it will perform a one-time registration process as illus-
trated in Fig. 1. The detailed steps are described below.

Loxin App

Certificate
Authority (CA) Loxin Server

Push Message
Service (PMS)

Identity
Provider (IDP)

Step 1.2

Step 1.1

Step 1.3

Step 2.1

Step 2.2

Step 3.1

Step 3.2

Step 3.3

Fig. 1. Registration process of Loxin.

Step 1. Obtain a public-key certificate from CA.

Step 1.1 The Loxin App generates a pair of public key PK and private key SK. The Loxin
App prompts the user to choose or enter an ID (e.g., email address) and then
sends ID and PK to the CA.

Step 1.2 The CA first communicates with the IDP and verifies the user’s ID, such as
sending a verification email to the claimed address. This step is simplified in
Fig. 1, since the details may vary for different providers.

Step 1.3 If the user’s ID is verified, the CA sends its signed certificate Cert(ID,PK),
containing both ID and PK, back to the Loxin App.

Step 1 is only required to be completed once. After that, the user can log in to other
cloud services by using this ID. Please note that the private key SK should be securely
stored, and never be released outside the Loxin App.



4 Bo Zhu, Xinxin Fan, and Guang Gong

Step 2. Register to a PMS.

Step 2.1 The Loxin App sends a registration request to a PMS.
Step 2.2 The PMS verifies the request and sends back credentials for registration, which

can be used by other software and services to send messages to the Loxin App.
Here we simply use a token Tok to represent all the PMS credentials.

Step 3. Register to the Loxin Server securely.

Step 3.1 The Loxin App sends a registration request, which contains Cert(PK, ID) and
Tok, to the Loxin Server.

Step 3.2 The Loxin Server responses with a random number Rreg and an expiration time
Treg for this request.

Step 3.3 The Loxin App signs ID, Tok, Rreg and Treg with its private key SK. The sig-
nature

Sigreg(ID,Tok, Rreg, Treg)

is sent to and verified by the Loxin Server. If the signature is valid, the Loxin
Server stores the pair (ID,Tok) into its database for later use.

Steps 2 and 3 may need to be executed multiple times for updating Tok when the
network environment changes. However, those steps can be performed in background
without users’ interactions.

2.3 Authentication

By using Loxin, users can authenticate their pre-owned identities to various cloud services
even without pairing with or registering to those services first. This feature is able to
remove or shorten registration processes and make cloud service more user-friendly.

When a user wants to log in to a cloud service from his/her computer using Loxin
(see Fig. 2), a backend server of the cloud service will generate a random challenge for
the user, and the Loxin Server will forward the challenge to the Loxin App via the PMS.
Upon receiving the user’s manual permission, the Loxin App will sign the challenge with
the private key SK and send the signature to the cloud service for verification. The
authentication process is illustrated in Fig. 2 and detailed below.

Step 1 The user enters and submits only ID to the cloud service.
Step 2 The cloud service generates a random number Rauth, an expiration time Tauth,

and a callback address URL for this login request. In addition, a cryptographic
hash value

tag = hash(ID, Rauth, Tauth,URL)

is computed and displayed on the user’s computer. The hash value may be rep-
resented by certain formats, such as figures or colorful barcodes, other than plain
strings, so it can easily be visually checked by the user.

Step 3 The cloud service sends ID, Rauth, Tauth, and URL to the Loxin Server.
Step 4 The Loxin Server searches ID in its database in order to retrieve the corresponding

Tok. The Loxin Server then uses Tok to send Rauth, Tauth, and URL to the PMS.
Step 5 The PMS forwards Rauth, Tauth, and URL to the user’s Loxin App.



Loxin – A Solution to Password-less Universal Login 5

Loxin App

Loxin Server

Push Message
Service (PMS)

Computer

Web Service

Step 1
Step 2

Step 7

Step 4

Step 5

Step 6

Step 3

Fig. 2. Authentication process of Loxin.

Step 6 The Loxin App recomputes the hash value tag based on the received ID, Rauth,
Tauth, and URL. The Loxin App prompts the user to verify the correctness of basic
login information, and compare the figures or barcodes shown on the computer
and the Loxin App. Once tag and other information are approved, the Loxin App
computes the signature

Sigauth(ID, Rauth, Tauth,URL)

with the private key SK, and then sends Sigauth and Cert(ID,PK) to the cloud
service’s address URL.

Step 7 After verifying Cert(ID,PK) and Sigauth, the cloud service grants access to the
user.

2.4 Revocation

When a user’s phone is lost, the private key SK stored in the Loxin App might be
compromised either. In this case, the user needs to contact the CA to revoke the certificate
of the corresponding public key PK. For example, if the CA allows only one certificate
for each ID, the user may go through the registration process (see Section 2.2) again to
revoke the old certificate.

Contacting the CA to revoke the lost certificate may be time-consuming, and the user’s
email account may be compromised as well once the mobile device is lost. One possible
solution to secure the revocation process is generating a second pair of public and private
keys, PK’ and SK’, during the registration process. This second key pair should be stored
out of the mobile device, e.g. printing on a paper, for security purpose. If the user’s
primary secret key SK may be leaked, the user can authenticate his/her identity by using
PK’ and SK’ to the Loxin server to block further login requests associated with the
leaked PK. PK’ and SK’ may also be used by the CA to verify users in order to revoke
certificates.

In order to minimize the risk that the user’s private key is used by adversaries, certain
countermeasures may be deployed, e.g., requiring a short PIN to access the Loxin App



6 Bo Zhu, Xinxin Fan, and Guang Gong

and limiting the number of retrials. Please note that adding such a PIN will make the
application less convenient, but it is still much more user-friendly than remembering and
entering long passwords. Moreover, other information such as fingerprints and network
locations may be considered to unlock the application instead of short PINs in the future,
in order for improving usability and security.

3 Security Analysis

This section aims to analyze the security of Loxin. In addition, several methods are
provided to further enhance the security of Loxin.

3.1 Against Man-in-the-Middle Attacks

In order to guarantee that the tag displayed on the computer is really the one generated
by the cloud service provider, the Internet connection between the cloud service and the
user’s computer should be well protected by certain secure transport layer such as TLS.
Next, tag shown by the Loxin App will be compared by the user to the one shown on the
computer, and thus ensure both Rauth and Tauth are not replaced by any adversary in the
middle.

Moreover, the disclosure of request information transmitted in the authentication pro-
cess will not affect the security of the entire authentication protocol. As long as the tag
shown on the web page is authenticated and matches with the one displayed on the
Loxin App, the user will be successfully authenticated to the cloud service. Therefore,
man-in-the-middle attacks cannot gain much benefits for attackers.

3.2 Against Replay Attacks

Both registration and authentication processes involve a random number to prevent ad-
versaries from replay attacks. The random numbers are recommended to be at least 128
bits, such that it is infeasible for attackers to obtain two requests with a same random
number in order to re-send the eavesdropped public-key signatures to impersonate the
user.

Besides the random number, an expiration time is also included in the registration
and authentication processes, which will keep the whole system safe even if a random
number collision occurs in the long term.

3.3 Against Server Compromises

Since the private key SK never leaves the Loxin App, any backend server or cloud service
does not have the knowledge of SK. Therefore, as long as the IDP and CA are secure,
even if Loxin’s backend servers are compromised, attackers will not be able to authenticate
themselves to other cloud services.



Loxin – A Solution to Password-less Universal Login 7

3.4 Security Enhancements

One method to enhancing the security of Loxin is to sign the user’s ID and public-key PK
by multiple CAs. In this case, adversaries have to compromise all these CAs to generate
a fake certificate. Additionally, if one CA does not update its revocation list promptly,
cloud service providers can still check with other CAs. The other benefit is that the entire
Loxin service will not be controlled by a single CA provider, a.k.a., vendor lock-in, since
any CA works equivalently.

The other security enhancement is the public-key pinning, i.e., users’ certificates are
required to be signed by a small group of specific CAs. This will prevent dishonest CAs,
whose root certificates have already been embedded in various operating systems, from
creating fake certificates for Loxin.

If any users or organizations need a higher level of security, e.g., for protecting business
secrets, hardware security modules (HSMs) can be used with Loxin. A HSM exposes only
necessary interfaces, such as signature computation and verification, to operating systems
and applications, which will minimize the possibility of leaking the private key SK.

3.5 Security Limitation

As we mentioned before, the Loxin system gives the ability of using one user’s pre-owned
ID to log in to other cloud services, and the ID has to be authenticated by the IDP during
the registration process (see Fig. 1). For example, if one uses an email address as ID, the
address may be authenticated via the email service provider to the CA. Therefore, the
security of the Loxin system still relies on the trustworthiness of the IDP. In this sense,
the security of Loxin is similar to that of OpenID. Nevertheless, Loxin allows cloud service
providers to directly verify the users’ signatures by public-key certificates without the help
of the IDP, which improves scalability and reduces network protocol latency. Moreover,
the protocols of Loxin enable a user to securely log in from multiple devices easily with
one smart phone.

4 Extensions

This section presents several methods to extend the original design of Loxin for a wide
range of applications.

4.1 Two-Factor Authenticator

Loxin is fully compatible with traditional password-based authentication schemes, which
means even if users initially do not trust the security of the Loxin system, they can still
use Loxin as a convenient security enhancement, i.e. a two-factor authenticator.

This may help solving the adoption problem of early stages. Service providers can first
add Loxin as a two-factor security enhancement, and then give users the option to use
Loxin as a single authentication method.



8 Bo Zhu, Xinxin Fan, and Guang Gong

4.2 Local Authentication

Typing passwords is particularly painful on the relatively small screen of a smart phone.
The Loxin App can also be used to authenticate other applications installed on the smart
phone. In this special case, the authentication process of Loxin can be executed locally
without involving the Loxin Server or PMS. An application can broadcast a local login
request within the phone, and once the Loxin App receives the request it can reply a
proper signature upon the user’s approval.

4.3 Authentication via Barcode

If the Loxin Server or PMS is offline, the authentication request from the cloud service
will not reach the user in time. In this case, the cloud service can display a barcode (e.g.,
a QR code) to the user on the computer, which contains all the necessary information
about the request. After scanning the barcode, the Loxin App can send the authentication
signature to the cloud service directly. This method prevents the whole authentication
process from the potential single point of failure of the Loxin Server.

4.4 Pairing without ID

It is possible to use Loxin service even without first telling the user’s ID to cloud service
providers. For example, after scanning the barcode as described in the previous subsection,
the Loxin App will send the user’s public-key certificate along with the signature, and
then the cloud service can retrieve ID from the certificate. Thus the user does not need
to manually enter ID during the entire authentication process. In the original design in
Section 2.3, it is possible to utilize some other factors, such as geographic and network
information, to pair the Loxin App with the cloud service.

5 Loxin in Practice – Tackling the MintChip Challenge

In this section, we apply the Loxin security framework to build a password-less mobile
payment solution called EasyChip for tackling the real-world MintChip Challenge [16]
organized by the Royal Canadian Mint. With Loxin in place, a user can complete on-
line transactions without creating additional accounts with multiple merchants, thereby
offering an innovative password-less online payment service.

5.1 The MintChip Challenge

In 2012, the Canadian federal government announced in its budget that it would withdraw
the penny from circulation in the fall of 2012. As a quick response, the Royal Canadian
Mint unveiled its digital alternative called MintChip [16] to coinage and small bank de-
nominations, and simultaneously launched the MintChip Challenge contest to encourage
development of novel applications based on MintChip.

A MintChip is a secure smart card chip that can be encapsulated into different form
factors (e.g., a MicroSD card) for easier connection to computers and mobile devices. The
MintChip securely holds electronic money and enables a protocol to transfer it from one
chip to another.



Loxin – A Solution to Password-less Universal Login 9

5.2 The EasyChip Solution

To tackle the MintChip Challenge, we have developed EasyChip [9], an Android applica-
tion for password-less mobile payment based on the Loxin security framework in Section 2.
Using the EasyChip application on a smart phone, a password-less payment process works
as described below.

Registration In the Loxin framework, the Loxin App needs to first obtain a public-key
certificate from CA. However, the MintChip inside a smart phone has already contained a
unique 64-bit MintChip ID, a preloaded private/public RSA key pair, and the associated
X.509 public-key certificate issued by the MintChip CA. Therefore, Steps 1.1 – 1.3 in the
Loxin registration procedure can be omitted. Secondly, the Loxin App selects/creates an
exiting/new email account and registers it to the Google Cloud Messaging for Android for
the push message service. Finally, the Loxin App registers to the Loxin Server with the
email account, the MintChip ID, the MintChip certificate, and the push message service
token as described in Steps 3.1 – 3.3 of the Loxin security framework.

Authentication and Payment A complete MintChip payment always involves two
MintChip devices, namely a sender and a receiver. Moreover, the receiver’s MintChip
ID must be known by the sender. When a customer (i.e., a sender) wants to purchase
a product from a merchant website (i.e., a receiver), the customer first enters the email
address associated with the EasyChip App.

The merchant’s web server, which is equipped with another MintChip, generates a
MintChip Request message that contains the information such as the receiver’s MintChip
ID, the amount to pay, a URL specifying where the payment should be sent to, a random
challenge, etc. The MintChip Request message and the customer’s email address will
be sent to the Loxin Server. Upon receiving the message, the Loxin Server looks up its
database with the customer’s email address and retrieves the push message service token.
The Loxin Server then pushes the MintChip Request message to the customer’s smart
phone through the PMS.

When the customer confirms the payment request, the MintChip inside the customer’s
smart phone will immediately generate a signed MintChip Value message using the RSA
signature scheme and send it back to the merchant’s web server. After verifying the
received MintChip certificate and digital signature, the payment will be processed. Note
that the entire authentication and payment processes follow the Loxin security framework,
and the customer does not need to enter any password.

6 Related Work

In this section, we discuss several related products as well as the competitive advantages
of Loxin.

6.1 RSA SecurID

RSA SecurID is a well-established product in the two-factor authentication market, which
is a hardware token with a small screen showing a pseudo-random authentication code



10 Bo Zhu, Xinxin Fan, and Guang Gong

in every minute [15]. Each RSA SecurID shares a secret seed with its backend server.
When a user submits the authentication code to a cloud service, the service provider will
compute the number based on their own knowledge of the secret seed and then compare
it with the one submitted by the user.

When compared to the design of Loxin, if the servers of RSA SecurID are compromised,
attackers can compute any pseudo-random authentication codes after obtaining their
secret seeds. This kind of incidents did happen in 2011 [3], which renders RSA SecreID
less effective to serve as a secure two-factor authentication mechanism. Moreover, RSA
SecurID also has a usability issue and users have to carry the extra hardware device. In
addition, different cloud services usually do not share an identical secret seed, so user
may be required to have multiple devices associated with various service providers.

6.2 Google Authenticator

Google Authenticator [12] is a software solution to the usability issue of RSA SecurID. It
replaces the hardware device of RSA SecurID by a software application on users’ mobile
devices, and can be paired with many service providers such that users do not need to
carry multiple devices.

However, Google Authenticator still shares seeds with its backend servers, and is
required to be manually paired with each service provider similarly as RSA SecurID,
which is not user-friendly when compared to Loxin.

6.3 Kerberos

Kerberos is a symmetric-key cryptography based protocol that allows users authenticate
their identities to services by the help of a central Kerberos server [6]. A ticket will be
issued by the central server for a specific service when the user wants to access the service.

Kerberos apparently suffers from single point of failure of the central Kerberos server.
In addition, although a public-key cryptography based initial authentication extension is
proposed in [10], the ticket issued in Kerberos system is still produced by symmetric-key
algorithms. Thus once the database of the Kerberos server is compromised, the credentials
of all users will be in danger.

6.4 Pico

Pico is a hardware solution proposed by Stajano in 2011 [8], which serves as a replace-
ment of password authentications. Pico is recommended to be a dedicated device with
capabilities such as camera and radio. It is hard to manufacturer and users are required
to carry it all the time. Moreover, Pico has to be paired with each application in a similar
way as RSA SecurID and Google Authenticator.

6.5 Twitter’s Two-Factor Authentication

Recently, Twitter has upgraded its mobile applications to support a public-key cryptog-
raphy based two-factor authentication solution [7], which has a similar idea as Loxin in
the sense that the web server sends a login challenge to the user and requires it to be
signed by the private key stored in the smart phone application.



Loxin – A Solution to Password-less Universal Login 11

As mentioned in [17], the design of Twitter’s two-factor authentication mechanism has
a security hazard that users cannot tell the differences between the fake login requests
initiated by adversaries and the real ones by the users themselves, since the smart phone
application does not provide the user with detailed information about login requests. The
hash value tag used in the Loxin system can be adopted to defeat this kind of attacks.
Moreover, the public key is only paired with Twitter, which is similar to the method of
Pico. To provide single-sign-on service to other service providers, the public key needs to
be properly signed by trusted third-party CAs.

6.6 Mozilla Persona

Persona (formerly BrowserID) is a decentralized single-sign-on system developed by Mozilla
for users and websites to release the burden of creating and managing passwords [14]. Per-
sona adopts users’ email addresses as identities and issues public-key certificates for these
emails.

However, the design of Persona aims to provide in-browser solution and stores the
public-key certificate in the local space of a browser. Therefore, to use on multiple devices,
Persona may need to be set up many times, which is not as convenient as Loxin. With
the help of push message services, Loxin allows a user to store his/her private key in a
smart phone and access many services on multiple computers or devices.

6.7 PhoneAuth

PhoneAuth is a user-friendly two-factor authentication mechanism proposed in 2012 [4].
The login request is automatically signed by the smart phone application, if the user’s
smart phone is present and can be connected to the computer via Bluetooth. The whole
two-factor authentication process does not need the user’s interaction.

However, PhoneAuth requires the web browser to be capable of sending data to the
user’s smart phone via Bluetooth connection. In [4], the authors managed to achieve this
function by developing an extension for the Chromium browser. The regular browsers
without any modifications do not have such abilities, and it would be dangerous to open
a web interface to physically access users’ smart phones.

6.8 Duo Push

Duo Push is a commercial software application developed by Duo Security [11], which
aims to provide a two-factor authentication with push message capabilities. However, the
design details of Duo Push are not disclosed. Moreover, the authentication status of a
user in Duo Push depends on the response from the verification servers of Duo Security,
which makes Duo Push unsuitable for replacing password-based authentication solutions
developed by other services and companies. Furthermore, the systems integrated with
Duo Push may have the single point of failure. In this case, users cannot access cloud
services when the verification servers of Duo Security are not working properly or being
compromised.



12 Bo Zhu, Xinxin Fan, and Guang Gong

7 Conclusions

In this paper, we propose an authentication system called Loxin. We demonstrate that
Loxin can be used to replace traditional universal authentication systems based on pass-
words, and it is secure against man-in-the-middle attacks and replay attacks. In particular,
even if the servers of Loxin are compromised by attackers, the private keys of users are still
safe and thus attackers cannot impersonate the users. This salient feature makes Loxin an
attractive security solution for password-less web authentication. Several methods have
been proposed to extend Loxin for different use cases, and to avoid single point of failure
and vendor lock-in. We have also developed EasyChip, an Android application of the
Loxin security framework, to demonstrate the power of Loxin for building a real-world
password-less mobile payment solution.

Acknowledgments

The authors would like to thank the anonymous reviewers for the helpful comments. The
research is supported by NSERC Discovery Grant.

References

1. J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest to Replace Passwords:
A Framework for Comparative Evaluation of Web Authentication Schemes. IEEE Symposium
on Security and Privacy - S&P 2012, pp. 553-567, IEEE Computer Society, 2012.

2. L. S. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P. McDaniel, and T. Jaeger. Pass-
word exhaustion: Predicting the end of password usefulness. Information Systems Security,
pp. 37-55, Springer Berlin Heidelberg, 2006.

3. A. Coviello. Open Letter to RSA Customers, 2011, available at https://www.sec.gov/

Archives/edgar/data/790070/000119312511070159/dex991.htm.
4. A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz. Strengthening user authen-

tication through opportunistic cryptographic identity assertions. In Proceedings of the 2012
ACM conference on Computer and communications security, pp. 404-414, ACM, 2012.

5. D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, Internet Engineering Task
Force (IETF), 2012.

6. S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos: An authentication
service for computer networks. In Project Athena Technical Plan, 1987.

7. A. Smolen. Login verification on Twitter for iPhone and Android.
Twitter, Inc., 2013, available at https://blog.twitter.com/2013/

login-verification-on-twitter-for-iphone-and-android.
8. F. Stajano. Pico: No More Passwords!. The 19th International Workshop on Security Proto-

cols Workshop, LNCS 7114, B. Christianson et al. (eds.), Berlin, Germany: Springer-Verlag,
pp. 49-81, 2011.

9. B. Zhu and X. Fan. EasyChip, 2012, available at http://mintchipchallenge.com/

submissions/9469-easychip.
10. L. Zhu and B. Tung. Public key cryptography for initial authentication in Kerberos (PKINIT).

RFC 4556, Internet Engineering Task Force (IETF), 2006.
11. Duo Push: One-Tap Authentication, Duo Security, Inc., available at https://www.

duosecurity.com/duo-push.
12. Google Authenticator Project – Two-Step Verification, Google Inc., available at http://

code.google.com/p/google-authenticator/.



Loxin – A Solution to Password-less Universal Login 13

13. OpenID Authentication 2.0 - Final, OpenID Community, 2007, available at http://openid.
net/specs/openid-authentication-2_0.html.

14. Persona Protocol Overview, Mozilla Developer Network and individual contributors, available
at https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview.

15. RSA SecurID Hardware Authenticators, RSA Inc., available at http://www.emc.com/

security/rsa-securid/rsa-securid-hardware-authenticators.htm.
16. The MintChip Challenge, The Royal Canadian Mint, 2012, available at http://

mintchipchallenge.com/.
17. Thoughts on Twitter’s new Two-Factor Authentication, Authy, 2013, available at http://

blog.authy.com/twitter.


